Fragility Function Uncertainty Quantification in Infilled RC Frame Buildings

Speaker:Al Mouayed Bellah Nafeh – IUSS PaviaWhen:12th June 2023Where:Athens, Greece

ROSE Centre Centre for Training and Research on Reduction of Seismic Risk Web: www.iusspavia.it/rose Email: rose@iusspavia.it

Outline

Outline

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

Statistical Significance in Regional Building Stocks

High Vulnerability to Ground-**Shaking Events**

Accurate Response Characterisation

Reduction of Uncertainty in Riskand Loss-Based Applications

Improved Decision-Making and **Overall Community Resilience**

Residential buildings by construction material

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

Statistical Significance in Regional Building Stocks

High Vulnerability to Ground-**Shaking Events**

Accurate Response Characterisation

Reduction of Uncertainty in Riskand Loss-Based Applications

Improved Decision-Making and **Overall Community Resilience**

Residential buildings by period of construction and construction material

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

pre-1918

1919-1945

1946-1960

1961-1970 1971-1980 1981-1990 1991-2000 2001-2005 2006 and after

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

Statistical Significance in Regional Building Stocks

High Vulnerability to Ground-Shaking Events

Accurate Response Characterisation

Improved Decision-Making and Overall Community Resilience

Damage observations following earthquake events

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

Reduction of Uncertainty in Riskand Loss-Based Applications

Improved Decision-Making and Overall Community Resilience Predicted ≈ Observed Analytical >> Empirical

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

High Vulnerability to Ground-Shaking Events

Accurate Response Characterisation

Reduction of Uncertainty in Riskand Loss-Based Applications

Improved Decision-Making and Overall Community Resilience

- Adequate characterization of structural response
- Reduction and mitigation of seismic risk
- Drafting prioritization schemes and policies
- Retrofitting and structural rehabilitation
- Adequate allocation of resources
- Minimization of direct and indirect seismic losses

Simplified Assessment

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

Simplified Assessment

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

- Detailed numerical model;
- Must account for all possible inelastic mechanisms and failure modes;

Response Evaluation Tool

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

- Perform eigenvalue analysis to extract first-mode shape ordinates;
- Perform nonlinear static pushover to characterize the lateral response of the MDOF system (i.e., base-shear vs roof displacement);

Response Evaluation Tool

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

Response Evaluation Tool

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

Scuola Universitaria Superiore Pavia

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

Equivalent SDOF Definition

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

Total 105 low-rise and mid-rise infilled RC building

archetypes

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

spectral acceleration corresponding to conditioning

*periods of T**=0.2-0.6s

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

Suggested value of IM EDP uncertainty for low and mid-rise infilled RC

buildings

Seismic Code Level	Number of Stories	Taxonomy Code	Suggested Dispersion, β
Low (GLD)	Low-rise (2-3)	LC-LR	0.25
	Mid-rise (4-6)	LC-MR	0.23
Moderate (SSD)	Low-rise (2-3)	MC-LR	0.28
	Mid-rise (4-6)	MC-MR	0.23

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

Case Study Example

- Three-storey RC school building with masonry infills;
- Located in Napoli, Italy;
- Constructed in the 1960s, before the introduction of modern seismic design guidelines;

General layout and numerical modelling techniques of the case study school building.

Summary of the modal properties of the case study building in both principal directions

	X-Direction		Y-Direction (Weaker Direction)				
Floor No.	Mass, m _i [tonnes]	First-mode shape, Φ	Period, T ₁ [s]	Yield spectral acceleration, Sa _y [g]	First-mode shape, Φ	Period, T ₁ [s]	Yield spectral acceleration, Sa _y [g]
Base	0	0.00	0.62	0.62 0.42	0.00	0.36	0.40
First	985	0.22			0.22		
Second	960	0.56			0.57		
Third	806	1.00			1.00		

Summary of the fragility function comparisons

Ductility Thresholds	Simplified Assessment		Extensive Assessment (MSA)	
	Median intensity, Sa _{avg} [g]	Dispersion, β	Median intensity, Sa _{avg} [g]	Dispersion, β
µ=1	0.20		0.22	0.28
μ=2	0.24	0.25	0.27	0.26
μ=5	0.44		0.43	0.26

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

Summary of the fragility function comparisons

Case Study Example

Seismic Risk Calculation:

• Classical Approach:

Scuola Universitaria Superiore Pavia

$$\lambda = \int_0^{+\infty} P[\mu \ge \mu | IM = s] | dH(s) |$$

- Pushover-Based Risk Estimation (PB-Risk):
- 1. Second-order approximation of the hazard function:

$$H(s) = k_0 \exp\left[-k_2 ln^2(s) - k_1 \ln(s)\right]$$

2. Application of IM-based closed form expressions:

$$\lambda = \sqrt{pk_0^{1-p}} [H(s)]^p \exp\left[\frac{k_1^2}{4k_2}(1-p)\right]$$
$$p = \frac{1}{1+2k_2\beta^2}$$

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

Seismic hazard characterization and second-order approximation

Summary of the risk assessment comparisons

Ductility Thresholds	PB-Risk	Classical	Error in MAEE antimation	
THESHOLDS	Mean annual frequency of exceedance (MAFE), λ		Error in MAPE estimation	
μ=1	0.0031	0.0029	6.89%	
μ=2	0.0021	0.0019	10.52%	
μ=5	4.92E-04	5.02E-04	1.6%	

Conclusion

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

Scuola Universitaria Superiore Pavia

- A simplified tool for the seismic performance assessment of infilled RC frames was presented;
- The epistemic uncertainty associated with structural response (IM|EDP) was quantified for the infilled RC typology and different sub-taxonomies;
- The suggested values of the record-to-record variability could be incorporated with other simplified methodologies for the derivation of fragility functions or risk metrics (e.g. *PB-Risk*);
- The suggested values were validated on a case-study school buildings where an adequate match in terms of vulnerability and risk parameters was observed;
- Good agreement between the results of classical and simplified methodologies;

Links:

• Database of Archetype Building Models:

https://github.com/gerardjoreilly/Infilled-RC-Building-Database

• Response Estimation Tool for Infilled RC Frame Structures:

https://github.com/gerardjoreilly/Infilled-RC-Building-Response-Estimation

Publications:

- Nafeh A.M.B., O'Reilly G.J. (2022) Unbiased simplified seismic fragility estimation of non-ductile infilled RC structures. Soil Dynamics and Earthquake Engineering 157:107253. <u>https://doi.org/10.1016/j.soildyn.2022.107253</u>
- <u>PB-Risk</u>: Nafeh, A.M.B., O'Reilly, G.J. (2023) Simplified pushover-based seismic risk assessment methodology for existing infilled frame structures. Bulletin of Earthquake Engineering 21, 2337– 2368 <u>https://doi.org/10.1007/s10518-022-01600-y</u>

9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering June 12th - 14th 2023

Thank you for your attendance e-mail: mouayed.nafeh@iusspavia.it

